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1. Introduction      

With the increasing number of marketed chemicals, understanding their effect on 
different dimensions of sustainability has become a priority. Since chemicals can be 
found along the different stages of the supply chains of most products and services, it is 
important to understand their sustainability from an holistic perspective. For this 
purpose, Life-Cycle Assessment (LCA) has been commonly selected as the suitable tool 
to quantify the impacts associated with the life-cycle of a product or chemical. The 
mapping between environmental flows and the affectation to the environment is done 
through the use of coefficients known as characterization factors (CF). While CFs are 
developed to address different types of environmental impacts, in this study we focused 
on toxicity-related impacts. 

In the literature, different methods were proposed to develop toxicity-related CFs for 
numerous chemicals, such as USEtox and Environmental Footprint (EF) (Saouter et al., 
2018). Nevertheless, not all chemicals are characterised in these methods. For instance, 
USEtox provides CFs for around 3000 chemicals and a recent update of this method (i.e., 
EF version 3) expanded the chemical coverage to around 6000. However, the provided 
CFs are still not enough to cover the whole range of chemicals, especially the ones newly 
developed. In these methods, calculating new CFs requires collecting various data 
concerning chemical properties to calculate factors related to fate, exposure, and effect. 
However, some of these data are not always available since they traditionally come from 
experimental tests that are cost- and time-consuming, confidential or non-transparent, 
and could face legislation restrictions on in-vivo tests on animals.        

To address this, recent literature has adopted the use of data-driven approaches such as 
machine learning (ML) to predict parameters or metrics that are later fed into the USEtox 
method, such as fate and intake factors (Marvuglia et al., 2015), species sensitivity 
distribution (SSD) (Song et al., 2022), hazard concentration 50% (HC50) (Hou et al., 2020a, 
2020b; Li et al., 2024). These works rely on the use of USEtox database to train their 
models, but they have not been updated or improved using novel toxicity datasets, such 
as the one provided by the new version of the EF 3 method (Saouter et al., 2018). 

The aim of this study is to fill these gaps by exploring different ML algorithms to produce 
off-the-shelf models of toxicity prediction. For this, the models are trained to predict 
hazard concentration 20% (HC20) of chemicals using only SMILE representation as input, 
so it can be used later in the pipeline of the novel EF 3 methodology. The novelty of our 
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study relies on the use of a new dataset that contains almost two times more data entries 
if compared to the formerly used USEtox dataset. 

2. Materials and methods 

Based on the different types of approaches found in the literature, we have identified 
two main methodological pathways that are commonly explored (see Figure 1). In this 
study we selected the first pathway that looks towards predicting HC20. The predicted 
HC20 are then used to calculate the effect factor (EfF) that measures the potentially 
affected fraction (PAF) of exposed masses in the freshwater ecosystem in the EF method. 

HC20 is predicted using two algorithms: the eXtreme Gradient Boosting (XGboost) and 
Gaussian processes. Molecular descriptors were obtained from SMILE labels using an 
open source cheminformatics library (i.e., RDKit) and HC20 were collected from the EF 
dataset. The final dataset contains 5540 observations with one predicted variable (i.e., 
HC20) and 256 characteristics as initial predictors. 

 

Figure 1. Illustrations of two methodological pathways common in literature. This work follows pathway 1. 

The data were split into training (70%) and testing (30%) sets. Three-fold cross-validation 
was used to choose the best hyperparameter combination from a grid search. The best 
model was then used to predict the test set using the coefficient of determination (R2) 

as indicator of performance of the model.  

3. Results 

In our preliminary results, the XGBoost model yielded an R² of 0.46 (see Figure 2), which 
sets a new benchmark for this training dataset. With respect to the Gaussian Process, a 
similar R² of 0.47, suggests that this model has a similar capacity of capturing the 
underlying complexity of the dataset.  



MaterialsWeek 2024 Book of Abstracts S05_P04 

 

 
 

Figure 2. Performance of predictions obtained from the XGBoost and Gaussian Process model using 

coefficient of determination as indicator. 

4. Conclusions  

This study embarked on a required quest to harness ML in bridging data gaps inherent 
in the toxicity characterization of chemicals, a pressing need amid the burgeoning array 
of chemicals in the market. Through the adept application of ML algorithms, namely 
XGBoost and Gaussian processes, this research is working on predicting chemical 
toxicity more accurately, leveraging on the latest EF data and methodologies.  

While preliminary, our results indicate that a further improvement of the algorithms is 
required. This may suggest that further research should be oriented to the adoption of 
more sophisticated algorithms such as deep learning. Finally, further steps in this study 
will include the exploration of the methodological pathway 2, which would imply the 
delivery of a completely off-the-shelf tool to be used in LCA studies. 
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